KENDRIYA VIDYALAYA SANGATHAN BHOPAL REGION Competency Based Test (2024-25) Class XII Month: Junel-2024 Topic: Electrostatics Potential and Capacitance

1	Equipotential at a great distance from a collection of charges whose total sum is not
	zero are approximately
	(A) Spheres.
	(B) Planes.
	(C) Paraboloids.
	(D) Ellipsoids.
Ans	Option (A) is correct.
	Explanation: For equipotential surfaces, these surfaces are perpendicular to the
	field lines. So there must be an electric field, which cannot be without charge. So
	the algebraic sum of all charges must not be zero. Equipotential surface at a great
	distance
	means that space of charge is negligible as compared to distance. So the collection
	of charges is considered as a point charge.
	Electric potential due to point charge is, $V = Kq/r$
	which explains that electric potentials due to point charge is same for all
	equidistant points. The locus of these equidistant points, which are at the same
	potential, forms a spherical surface.
2.	A positively charged particle is released from rest in a uniform electric field. The
	electric potential energy of the charge
	(A) remains a constant because the electric field is uniform.
	(B) increases because the charge moves along the electric field.
	(C) decreases because the charge moves along the electric field.
	(D) decreases because the charge moves opposite to the electric field.
Ans	Option (C) is correct.
	Explanation: As we know, an equipotential surface is always perpendicular to the
	direction of the electric field. Positive charge experiences the force in the direction
	of the electric field. When a positive charge is released from rest in uniform
	electric field, its velocity increases in the direction of electric field. So K.E.
	increases, and the P.E. decreases due to the law of conservation of energy.
3.	The shape of equipotential surfaces due to an isolated charge is
	a. Concentric spherical shells and the distance between the shells increases
	with the decrease in electric field
	b. Concentric spherical shells and the distance between the shells decreases
	with the decrease in electric field
	c. Equi-spaced concentric spherical shells
	d. Changes with the polarity of the charge.

Ans	Option (A) is correct. Explanation: Concentric spherical shells and the distance between the shells increases with the decrease in electric field. It does not depend on the polarity of the charge.Q.
4.	 Capacitance of a parallel plate capacitor can be increased by (A) Increasing the distance between the plates. (B) Decreasing the distance between the plates. (C) Decreasing the area of plates. (D) Increasing the thickness of the plates.
Ans	Option (B) is correct. Explanation: $C = k\epsilon_0 A / d$
5.	A parallel plate capacitor is charged by connecting it to a battery. Which of the following will remain constant if the distance between the plates of the capacitor is increased in this situation? (A) Energy stored (B) Electric field (C) Potential difference (D) Capacitance
Ans	Option (C) is correct. Explanation: As the battery remains connected with the capacitor, the potential difference remains constant.
6.	A parallel plate condenser has a capacitance 50μ F in air and 110μ F when immersed in an oil. The dielectric constant of the oil is (A) 0.45 (B) 0.55 (C) 1.10 (D) 2.20
Ans	Option (D) is correct. Explanation: $k = C/C_0 = 110 \ \mu F / 50 \ \mu F = 2.20$
7.	 A soap bubble is given negative charge, its radius will a. Increase b. decrease c. remains unchanged d. fluctuate
Ans	Option (A) is correct. Explanation: Due to mutual repulsion of charges distributed on the surface of the bubble, the radius will increase.

14.	An electron is introduced in a region of an electric field. The charge starts accelerating in the direction opposite to that of the field.
	Which of the following statements is true?
	A. The field does positive work on the electron and its potential energy increases.
	B. The field does positive work on the electron and its potential energy decreases.
	C. The field does negative work on the electron and its potential energy increases.
	D. The field does negative work on the electron and its potential energy decreases.
Ans	B. The field does positive work on the electron and its potential energy decreases.
15.	Assertion: The potential at a point is characteristic of the electric field at a point only whereas electric potential energy at a point is characteristic of the charge-field system. Reason: The potential is independent of a charged test charge placed in the field and the electric potential energy is due to an interaction between the electric field at the point and the charged particle placed in the field at that point. Select the correct option. A. Both A and R are true and R is the correct explanation of A B. Both A and R are true but R is NOT the correct explanation of A C. A is true but R is false D. A is false and R is also false
Ans	A. Both A and R are true and R is the correct explanation of A